Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome.
نویسندگان
چکیده
Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.
منابع مشابه
Synthesis through Nucleophosmin Translation TSC1 Sets the Rate of Ribosome Export and Protein
Nucleophosmin (B23) is a nucleolar phosphoprotein that has been implicated in numerous cellular processes. In particular, nucleophosmin interacts with nucleolar components of newly synthesized ribosomes to promote ribosome nuclear export. Nucleophosmin is a classic mitogen-induced protein, with changes in its expression correlating with growth factor stimulation. In this study, we examined the ...
متن کاملTSC1 sets the rate of ribosome export and protein synthesis through nucleophosmin translation.
Nucleophosmin (B23) is a nucleolar phosphoprotein that has been implicated in numerous cellular processes. In particular, nucleophosmin interacts with nucleolar components of newly synthesized ribosomes to promote ribosome nuclear export. Nucleophosmin is a classic mitogen-induced protein, with changes in its expression correlating with growth factor stimulation. In this study, we examined the ...
متن کاملNPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling
At a first glance, ribosome biogenesis and chromatin remodeling are quite different processes, but they share a common problem involving interactions between charged nucleic acids and small basic proteins that may result in unwanted intracellular aggregations. The multifunctional nuclear acidic chaperone NPM1 (B23/nucleophosmin) is active in several stages of ribosome biogenesis, chromatin remo...
متن کاملNucleophosmin is essential for ribosomal protein L5 nuclear export.
Nucleophosmin (NPM/B23) is a key regulator in the regulation of a number of processes including centrosome duplication, maintenance of genomic integrity, and ribosome biogenesis. While the mechanisms underlying NPM function are largely uncharacterized, NPM loss results in severe dysregulation of developmental and growth-related events. We show that NPM utilizes a conserved CRM1-dependent nuclea...
متن کاملA non-tumor suppressor role for basal p19ARF in maintaining nucleolar structure and function.
The nucleolus is the center of ribosome synthesis, with the nucleophosmin (NPM) and p19(ARF) proteins antagonizing one another to either promote or inhibit growth. However, basal NPM and ARF proteins form nucleolar complexes whose functions remain unknown. Nucleoli from Arf(-/)(-) cells displayed increased nucleolar area, suggesting that basal ARF might regulate key nucleolar functions. Concord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 28 23 شماره
صفحات -
تاریخ انتشار 2008